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Abstract-Two aspects of heat transfer to a laminar boundary layer are discussed. First, an exact solution 
to the thermal-energy equation is given for a flow, with continuously zero wall shear stress, subjected to 
a steep change in wall temperature. The principle of superposition IS used to obtain an expression for the 
heat-transfer rate for a power-law variation of surface to free-stream temperature difference. The second 
part of this note concerns the use of the above result, for the case of uniform surface temperature, to improve 
Spalding’s [l] refinement of Lighthill’s [2] general method for the calculation of heat transfer through 
laminar boundary layers. Spalding’s correction function is extended further into the regime of extreme 
adverse pressure gradient, and an analytical formula given for its asymptotic behavior at the separation 

point. 

NOMENCLATURE 

function of 1. defined by Spalding [l]; 

local surface heat-transfer coefficient 

[W/m*“C]; 
thermal conductivity of fluid [W/mT]; 
exponent of x-’ for power-law variation of 

u, ; 
exponent of x for power-law variation of 

T, - T,; 
Nusselt number; 

surface heat flux [W/m’] ; 
Reynolds number; 

fluid temperature [“Cl; 
surface temperature (value of T at y = 0) 

[“Cl; 
mainstream temperature (value of T for 

Y+~)[“Cl; 
component of fluid velocity in x-direction 

Cm/s1 ; 
mainstream velocity (value of u for y --* co) 

Cm/s1 ; 
component of fluid velocity in y-direction 

C&l ; 
distance measured along surface [m] ; 
distance measured normal to surface [ml; 
thermal diffusivity of fluid [m’/s]; 
boundary-layer length scale [m] ; 
non-dimensional length measured normal to 
surface; 
argument of Spalding’s correction function 

$namic viscosity of fluid /j?] ; 
kinematic viscosity of fluid [m’/s] ; 
unheated starting length [ml; 
Prandtl number; 
surface shear stress [N/m’]. 

1. INTRODUCTION 

LIGHTHILL [2] observed that so far as heat transfer 
through a laminar boundary layer is concerned, the 
crucial region of the velocity profile is that close to the 
surface where, if the shear stress is non-zero, the 
velocity u varies linearly with y, the normal distance 
from the wall. On this basis, Lighthill found an exact 
solution of the thermal-energy equation and deduced 
from it the expression below for the surface heat- 
transfer coefficient h 

x 

(1) 

0 

The surface shear stress zs(x) is presumed known. 
For a boundary layer with zero wall shear stress, 

Lighthill’s analysis fails because the leading term in 
the series expansion for u(y) is quadratic rather than 
linear. The first part of this note is concerned with a 
solution procedure, similar to Lighthill’s, for a flow 
with 7, continuously zero. 

Spalding [l] added a correction term to Lighthill’s 
result to allow for departures from linearity of the 
velocity profile in the vicinity of the surface, for both 
favorable and adverse pressure gradients. The correc- 
tion function was determined primarily on the basis 
of isothermal-wedge solutions, but was not continued 
all the way to the separation point. The second part 
of this note shows how the result of the first part can 
be used to obtain an approximate analytical form for 
Spalding’s function in the vicinity of the separation 
point. This approximation is then used, together with 
data from the wedge-flow solutions of Evans [3], to 
improve the accuracy of the correction term in the 
severe adverse pressure-gradient region, and to 
extend it up to the separation point. 
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2. LAMINAR BOUNDARY LAYER WITH r, 0 

(a) T, constant, x 3 < 

The thermal-energy equation for a laminar bound- 
ary with uniform fluid properties and negligible 
viscous dissipation is 

(2) 

with boundary conditions, for an unheated starting 

length 5 

y=o, x25: T = T, 

y+m: T = T,, 
8T 
- = 0. 
8V 

For a laminar boundary layer with continuously 
zero wall shear stress (a wedge flow with U, - xam. 

m = 0.0904) the velocity components u and u, close 
to the surface, are given by 

mu2 y2 
u=z 

m(2m + 1)~: y3 

2vx 
and V= 

6vx 
-. (3) 

Provided the thermal boundary layer is thin compared 
with the viscous boundary layer, these asymptotic 
expressions for u and v may be substituted into (2). 

Then, if T(x, y) (for x > 5) is assumed to be a function 
of the similarity variable q = y/6. where 6(x) is a 

length scale to be determined, (2) reduces to the 
ordinary differential equation 

The similarity assumption is seen to be valid 
provided only that the coefficient of q3 T’ is a constant, 

which may be chosen arbitrarily and for convenience 
is taken as unity.Then the equation for T reduces to 

T” + q3T = 0 
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(4) 

wherer(i) = y(& co) is a Gamma function, and 
94 

an incomplete Gamma function. 
The arbitrariness in the choice for the constant in the 

equation for T(q) is a direct result of the arbitrary 
nature of the thickness of the thermal boundary 
layer, to which the length scale 6 is proportional. The 
differential equation for 6 is 

which may be rewritten in a form more convenient for 
integration as 

subject to the boundary condition 

,y = < .> 6 = 0. 

The solution for 6 is 

where 0 = v/a is the Prandtl number. 
Then the following expression for the local heat 

transfer coefficient h = qJ(Ts - T1) is easily obtained 

/qx,() = !x - m)d31* k s + 
2ry$) (1 vx 

x [I _ (qx)2(l - mW] - : (7) 

or, in non-dimensional form, and with m = 0.0904 

Nu Relict = @225[1 - (Qx)~‘~~~]-~ (8) 

where Nu = hxJk and Re E u,x/v. A similar result, 
for < = 0, was derived by Liepmann [4] using an 
integral analysis. 

(b) T,(x) arbitrurily specified 

If the surface temperature T, varies with x in a 

known way, then the local heat transfer rate q, at any 
point x can be determined by the method of super- 
position, through evaluation of the Stieltjes integral 

wherein h(x, <) is given by (7). In the case of a power- 
law variation of Ts - T,D with x, i.e. 

Ts - T, .-.. x”, 

the Stieltjes integral can be evaluated in a straight- 
forward manner as a Rieman integral, leading to the 
following result in terms of a Beta function 

Nu Re-“a-$ = 0.225 &&&_1. (lo) 

The value of m is 0.0904 as before. 

3. EXTENSION OF THE LIGHTHILL-SPALDING 
CALCULATION METHOD TO 7, 0 

Although his formula (1) for h was proposed for 
general use, Lighthill [2] indicated that it becomes 
increasingly inaccurate as separation is approached, 
essentially because the linear region of the velocity 
profile then diminishes to vanishing point. As 



Heat transfer to a near-separating laminar boundary layer 111 

mentions in the introduction, Sanding [l] added a 
correction term to Lighthill’s result to allow for 
departures from linearity of the velocity profile, for 
both favorable and adverse pressure gradients. 
Spalding’s modified form of (1) is most conveniently 
written in differential form as 

k3 d 2 -- 
0 a& dx h3 

= 9r@,” + F(2) (11) 

where 

The correction function F(A) was determined 
primarily on the basis of the isothermal-wedge 
solutions, for @7 < Q < 10, and given in graphical 
form. However, Spalding did not specify F(L) for 
1 < -7 (approximately) so that (11) cannot be 
employed, as it stands, all the way to the separation 
point. The purpose of the second part of this note is to 
show that an approximate analytical form for F(J) 
for -L $ 1 may be deduced from (7), thus permitting 
continuous specification of F(d) up to and including 
1 = - co, the separation point. 

For isothermal-wedge flows, the term on the 1eR 
hand side of (11) may be simpIi~~ to 

k3z 
a(1 - m)L. 

puh3x 

Also, as z, + 0, l/d -+ 0 and F(1) may be expanded as 
a power series in l/1, i.e. 

F(A) = F(o0) + f r;yco) + q&P), 

so that (11) becomes 

31 - m)fli2x k 
3 * 6.41+ F(m) I- pku,(du#ld*)F’(03). 

Evidently F(co) = -6.41, if the latter result is to 
hold for r, = 0, and 

F’(a) = $(I - m)(~~~~/,=,=36~(~)'=23.4 

(from (7) with 4 = 0). Then, for --,I ,> I, we have 

F(A) + 6-41 = 23+4/I. (12) 

In Fig. 1, this result is used, together with data from 
the numerical solutions of Evans [3] for isothermal 

wedges, to extend the curve for F(a) to - l/d = 0 
(r, = 0). For consistency with Spalding’s analysis, 
only data points with 0.7 < e < IO have been plotted. 
Two defects in Spalding’s curve for F(A) are removed 
in Fig. 1. First, the curve is extended beyond d = - 7-5; 
secondly, for - I/A < O-35 Spalding’s original curve 
is in error, lying somewhat above the broken curve of 

Doto from Evans’ 
isothermol-wedge 
solutions 

0 01 02 03 04 05 06 07 
I_ hT* --- - 
x- 

PkfJ 
& 

m dx 

FIG. 1. Extension of Spalding’s F(1) function to l/A = 0. 

Fig. 1 for (T = 0.7. The data of Evans, used here, 
presumably are both more extensive and reliable than 
those available to Spalding in 1958. 

4. CONCLUDING REMARKS 

Through an exact solution of the thermal-energy 
equation, an expression was obtained for the heat- 
transfer coeffkient for a laminar boundary layer with 
continuously zero wall shear stress and arbitrary 
variation of surface tem~rature. 

This result, together with the numerica solutions 
of Evans for isothermal wedge flows, was used to 
improve the accuracy of Spalding’s refinement of the 
Lighthill method for calculating heat transfer in 
Iaminar flow, and to extend its range of application to 
include the separation point. 

REFERENCES 

1. D. B. Spalding, Heat transfer from surfaces of non- 
uniform temperature, J. Fluid Mech. 4 (l), 22-32 (19.58). 

2. M. J. Lighthill, Contributions to the theory of heat 
transfer through a faminar boundary layer, Proc. R. Sot. 
202A, 359-377 (1950). 

3. H. L. Evans, Laminar Bou~~ry-dyer Theory, pp. 
96102. Addison-Wesley, Reading, Mass. (1968). 

4. H. W. Liepmann, A simple derivation of Lighthill’s heat 
transfer formula, J. Fluid Mech. 3 (4), 357-360 (1958). 

TRANSFERT THERMIQUE POUR UNE CQUCHE LIMITE PROCHE DU DECOLLEMENT 

RksnmC--Qn discute deux aspects du transfert thermique dans une couche limite laminaire. Tout d’abord 
on donne une solution exacte de l’equation de l’energie pour un kcoulement a tension pari&aIe continument 
nulle et qui est soumis a un echelon de temperature de paroi. On utilise la principe de superposition pour 
obtenir I’expression du flux thermique dans Ie cas d’une variation en loi puissance de la difference de 
temperature entre surface et fluide au loin. La second partie de cette note applique les resultats obtenus au 
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cas de la temptrature de surface uniforme atin de pousser plus loin 1’amt;lioration. due & Spalding, de la 
mCthode gtnkrale de Lighthill pour le calcul du transfert thermique g travers les couches limites laminaires. 
Les fonctions de correction de Spalding sont etendues au rkgime des forts gradients de pression adverse 

et une formule analptique est donnCe pour le comportement as!mptotique au point de sCparation 

DER WARMEOBERGANG AN ElNE LAMINARt GRLNZSCHICHT NAHE IHRER .4BLijSI!NCi 

Zusammenfassung- -I55 werden Twei Gesichtspunkte deu WBrmetibergangs an tine laminare Gren.<schtcbt 
diskutiert. Zuerst wlrd eine exakte L6sung der thermischen Energiegleichung fiir eine StrBmung mrt 
verschwindender Wandschubspannung und einem PI&lichen Sprung in der Wandtemperatur gegehcn. 
Mit Hilfe des Superpositionsptinzips wurde ein Ausdruck fiir den WarmeiiberFang bei einer VerBntlcrung 
der Temperaturdifferen? ywischen Wand und F-reistrom nach einem Potensgesetz ermittelt. 

Im zweiten Teil werden obige Ergebnisse verwertet fiir den Fall gleichfiirmiger OberflLchentempcratui-. 
urn Spaldings [l] Verfeinerung der allgemeinen Methode con Lighthill [2] fiir die Berechnung de\ 
WLrmelberganges durch laminare Grenzschichten weiter zu verbessern. Die Korrekturfunktion nach 
Spaiding wurde ausgedehnt in das Cebiet extremer gegenlaufiger Druckgradienten und es wird eine Formel 

fiir deren asymptotisches Verhalten beim Abliisungspunkt angegeben. 


